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Abstract. State of the art analysis techniques on drill cores for exploration purposes, 

including X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS) 

or Raman spectroscopy are used to derive mineralogical information. Since this sensor 

data corresponds to materials that occur on the surface of the core, inclusions (e.g. 

diamonds) cannot be detected. In addition, information outside of the measurement 

position is not taken into account and may lead to misinterpretation or the miss of 

certain elements. X-ray computed tomography (CT) and radioscopy provide data 

about the entire sample as well as inlying structures based on X-ray absorption. As a 

drawback, CT is time-consuming and the material information is not explicit.  

 For the enhancement of geological interpretation, we propose to apply sensor 

data fusion techniques in order to unite both depth information as well as reliable 

material data information from surface measurement techniques. This leads to more 

substantial information of the drill core. 

 For further insights in the feasibility we investigate the correlation of XRF data 

at varying abstraction levels with CT data, i.e. grey value information. 

 The applied XRF technique involves the fact that the data is not acquired 

continuously but discrete point by point. This is accompanied by the circumstance 

that the spatial resolution of the acquired data has a different magnitude than the CT-

data. Both facts result in the challenge to register the XRF data coming from a one-

dimensional scan line with a micro-CT volume. The experiments must be planned in 

a way that location and orientation of the scan data are well-known and reproducible. 

 In the experiments, the acquired and registered data of a defined drill core is 

analysed with respect to correlation and fusion capability. The experimental setup will 

be presented and results will be discussed. 

1 Introduction  

Sensor based analysis of drill cores has been well established in mining and exploration 

activities in order to support geologists extracting valuable information from drill cores and 

samples. With huge amounts of cores coming from drilling activities, the need for automated 

inspection and computer aided analysis rises constantly. Different analysis techniques like 

LIBS, XRF or optical inspection are able to derive detailed and reliable information from the 
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core but are limited to analyse only the surface. In addition providing measurement data 

covering most of the surface is unpractical due to handling of the drill cores or samples. 

While most of the measurement techniques provide information based on a line or spot scan, 

the results from the surface must be extrapolated to the entire core. 

In contrast, computed tomography (CT) measurements are able to provide information on 

the entire core but lack the possibility to deduce chemical or geological information in the 

same detail and precision.  

In order to obtain precise mineralogical information as well as volumetric data considering 

the entire core, we propose a way of combining both measurement techniques with the aim 

of improving the overall available data of the core. 

2 Experimental Method 

2.1 Drill core samples and data generation 

Two drill core samples of 12 cm and 16 cm length respectively, have been chosen in close 

collaboration with the Geological Survey of Finland (GTK) and its drill core archive. The 

samples have been characterized petrographically using standard optical methods, with 

special emphasis on the chosen locations for the analytical lines (see section 3). To follow 

the attempt of combining multiple measurement techniques we performed XRF and CT scans 

on the selected drill cores. The measured data was then superimposed and combined. 

 

 
Fig. 1. Optical photographs of the studied drill core samples, including analytical lines 1 (drill core sample 1) 

and 6 (drill core sample 2). Macroscopically present minerals are marked according to the petrographic 

analysis. See Table 2 and text for more information. Abbreviations: Qtz = Quartz; Kfs = K-feldspar; Alm = 

Almandine garnet; Hbl = Hornblende; Hbl (hem) = Hornblende with hematite staining; Xlt = Xenolith 

fragment consisting of fine-grained biotite, hornblende and plagioclase. 

 

2.1.1 XRF 

XRF-data were generated manually using a Bruker S1 TITAN series handheld XRF analyser. 

The locations on the surface of the core where chosen in a way that we defined six lines along 
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the core samples that looked promising in measuring all present minerals. This fostered 

differentiating between them in CT-analysis. Then, measurement sites were marked with a 

pen. The spots were placed in regular intervals of 10 mm (scans 1 and 2) or 20 mm (scans 3 

and 4) respectively. The S1 TITAN has an internal camera that was used to measure as close 

as possible around the predetermined spots. 

Mineral distribution was ascertained using the GeoChem feature provided by Bruker.  

 

2.1.2 CT 

3D data was generated using a stop-and-go CT scan procedure that is common in diamond 

drill core scanning of samples similar to the ones used in this study. Scan parameters are 

listed in Table 1. 

 
Table 1. Scan parameters as used for the CT-scans 

Source-detector-distance 

(mm) 

663.384 Tube voltage (kV) 220 

Source-object distance (mm) 326.482 Tube current (mA) 0.18 

Number of projections 1200 Exposure time (ms) 300 

Voxel size (µm) 94.1765 Number of frames averaged 1 

 

Apart from the raw data, the most important information to be used is the edge length of a 

single voxel within the 3D dataset. Based on this we can calculate the volume of a voxel 

cluster we estimate to be of a specific material. 

2.1.3 Matching 

Matching the data of different sources was possible by marking the XRF measurement 

segments with zinc plates, which are easily identifiable in the CT data due to their known 

shape and high absorption. Therefore, we were able to calculate the individual measurement 

locations in terms of 3D coordinates. Automation of this procedure is possible, due to the 

difference in signal of the zinc plates from the other present minerals in the samples. It may 

also be possible to superimpose the measurements utilising contained materials or minerals 

with significant signal in both techniques or simply by a known alignment of the sensors to 

each other within the measurement coordinate system. 

2.2 Image Processing 

The aim with the segmentation of the aforementioned areas is to determine the amount of Fe 

in the core samples. The segmentation process creates a mask that marks each voxel as either 

Fe or not. In future work, it should be investigated if a weighted mask is more suitable. Such 

mask would not only represent a binary decision (Fe: yes or no) but an approach closer to 

fuzzy logic. 

There are two issues regarding the raw CT scan data: 

1. Cupping: cupping artefacts are caused by beam hardening and lead to radial, non-equal 

grey value distributions in the core volume (Fig. 2). We managed to minimize the cupping 

effect by first calculating a median over the z-index of the whole core and then calculating 

a radial mean value over 100 angles. 
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Fig. 2. Median of z-projection showing higher grey 

values on the border (lighter) than on the inside 

(darker). 

 
Fig. 3. Calculating a radial mean for multiple angles 

from the result of Fig. 2. 

The averaged data was fitted via polynomial curve fitting to get a smooth curve (see Fig. 

3). Based on the curve, the whole core volume data was corrected to achieve the same 

grey values for equal materials and densities in the core, independent of their distance to 

the core surface, which is crucial for approximating the total concentration of a certain 

material. In addition, the grey value outside the radius of the core was set to zero. 

 

2. Noise: This is partly because of the acquisition method and partly due to the fact that 

minerals can be of a specific structure that may mimic a noise signal in 3D data. To 

eliminate most of the noise, we applied a specific type of median to the core volume data 

that would ignore values that are zero. This was necessary to ensure that the air around 

the core would not affect the calculated median value.  

After these two problem solving steps, we noticed a better data quality (i.e. a more distinct 

grey value profile) by examining single slices of the 3D volume and individual plots. The 

denoising step was important to increase the overall contrast between different areas and 

lower the contrast within them, which was the starting point to begin segmentation. 

2.3 Segmentation and Binarisation 

For segmentation a k-means algorithm was applied. Alternative methods would include 

watershed segmentation and manual separation of histogram values. We settled with the k-

means approach to be able to automate the process in the future. Some specific values for the 

algorithm were chosen manually: we set k=3 to segment the data into background/air (low 

values), Si (mid values) and Fe (highest values). Manual starting points for the clustering 

were gathered by considering the volume histogram. We performed this step in order to 

ensure the reproducibility of the results. 

We segmented solely for the grey-value of the CT scan and did not track any other features 

such as the size of specific connected clusters. After the segmentation we only kept the label 

representing Fe, the other voxels were set to zero. One main intention was to ensure the 

interpretability of the analysis results. The labelled volume contained clusters of different 

sizes, especially many small voxel clusters or even single voxels. The petrographic analysis 

suggested that the small clusters and single voxels do not correspond to Fe in reality. We 

hence deleted all clusters with sizes smaller than 5mm³. This threshold was selected 

arbitrarily according to the petrographic analysis and had minor impact on the analysis result 

itself. 
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3 Results 

3.1 Petrographic analysis  

Both samples are gneisses with granitic to granodioritic composition and coarse grain sizes 

which in part resemble a pegmatitic texture. They belong to a suite of 1.8 – 1,9 Ga 

metamorphic granite gneisses representing a portion of the bedrock around Helsinki, Finland 

(Alan Butcher, personal communication 2019). Identified minerals in the samples include K-

feldspar, quartz, plagioclase, hornblende (often hematite-stained) and almandine (Fe-rich) 

garnet. In core sample 2 (analytical lines 5 and 6), a xenolithic fragment occurs which 

consists mainly of fine-grained hornblende, biotite, quartz and plagioclase. This drill core 

sample generally contains lower amounts of quartz and higher portions of hornblende, 

probably representing a more intermediate composition compared with sample 1 (analytical 

lines 1–4). The encountered main minerals in the drill core samples, including their ideal 

chemical formulas, are summarized in Table 2. 
 

Table 2. Main mineralogy of the drill core samples utilized in this study as identified in the petrographic 

analysis, including ideal chemical formulas. Chemical substitutions and trace elements can occur. 

Mineral Chemical formula 

K-feldspar (orthoclase) KAlSi3O8 

Quartz SiO2 

Plagioclase (Na,Ca)(Si,Al)4O8 

Hornblende (K,Na)0-1(Ca,Na,Fe,Mg)2(Mg,Fe,Al)5(Al,Si)8O22(OH)2 

Hematite (present as 

staining on hornblende) 

Fe2O3 

Almandine garnet Fe3Al2(SiO4)3 

Biotite K(Mg,Fe)3AlSi3O10(OH,F)2 

3.2 Matching 

In general, grey values in a reconstructed CT-volume correspond to attenuation coefficients 

of the respective material: the higher the grey value, the higher the attenuation coefficient. In 

our case, the grey values are represented by arbitrary units. Correlation of the XRF- and CT-

data sets provided the insight that high grey values (corresponding to the bright spots in the 

cross sections) show a correlation with the fraction of Fe compounds measured by the XRF 

scans. To provide this data, we listed the Al and Fe compounds, which represented the major 

share of minerals besides Si and plotted them onto an unwrapped view of the drill core surface 

provided by CT data (see Fig. 4). In order to analyse correlation, we created a line plot 

containing the Al- and Fe- fractions on the one hand and grey values on the other hand (Fig. 

5). The impact of Fe on the grey values is clearly visible, while Al has minor impact. 
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Fig. 4. Unwrapping of drill core surface. 

XRF Measurements marked in green, Fe marked by red circles, Al findings in blue. 

Other minerals such as Al compounds could not be identified with good correlation in the 

CT data. This should be further investigated in using different approaches based on what 

features to correlate (not the grey values itself but the mean grey value in a defined area 

combined with the standard deviation in the region of interest for example). In order to be 

able to correlate more minerals in XRF and CT data, we need more drill cores and methods 

how to correlate the data.  
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Fig. 5. Correlation between XRF data (blue o, orange x) and grey values from CT (green dots). It is clearly 

visible, that the occurrence of Fe leads to an increased grey value, while the occurance of Al has comparably 

less impact. 

3.3 Volume data and image processing 

Following the workflow outlined above (see 2.2), we have a volume that contains binary 

information on whether the individual voxel in the original volume is to be taken as Fe or 

not. Calculating the number of voxels that were labelled to be Fe, we obtained the following 

data (Table 3): 

 
Table 3. Combined results of the core analysis. The method allowed a determined fraction of Fe of 1.5 %, 

which correlates with the petrographic analysis. 

 volume (cm³) number of voxels fractional part 

drill core 204.48 244,806,465  100 % 

Fe 3.07 3,673,824 1.50 % 

 

The following images illustrate the steps applied to the volume. Every row shows one specific 

2D slice from the same 3D volume in different stages of the processing. 
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Fig. 6. Results at different stages of the workflow. The steps from left to right:  

1: after having corrected the cupping artifact 

2: after having applied denoising 

3: after segmentation 

4: after having eiminated small grains 

The images show 2D cross-sections of a three-dimensional data set. All in step 4 eliminated 

areas belong to clusters of size smaller than 5mm³. All remaining single white pixels are 

directly connected to clusters larger than 5mm³. These clusters in general extend over several 

slices and may therefore appear smaller than they are. 

All calculations were done using python with packages from numpy[2] and scipy[3] 

(scipy.ndimage in particular, [1]-[4]). 

4 Conclusion and outlook  

4.1 Performance of the developed methodology and possibilities for improvement.  

The overall goal of extending the surface data into the 3D volume could be partially achieved. 

When working with the data we observed that handling the segmentation between Si and Fe 

was relatively stable while trying to separate Al or K from other materials did not work with 

the same reliability. 
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There is, of course, opportunity for improvements, especially when we consider investigating 

more samples. A few examples of improvements that will be worked on are: 

- Extending the range of detectable materials by sharper CT-segmentation and 

gathering combinations of XRF-measurements and responding CT-information. 

- Using the graphics card as a way to improve calculation speed. 

- Automating the process of matching the coordinates of XRF- and CT-data by 

segmenting the CT data for markers. 

- Finding an automatic way to provide parameters for the k-means algorithm. 

- Identifying the radius and overall extent of the core in the 3D data automatically. 

These steps should help to develop an algorithm that receives XRF- and CT-data as input, 

producing an estimate for Fe as an output. In regards to the precision of the proposed method, 

comparison to established surface technique based scanners as well as a direct chemical 

analysis is part of the ongoing work to validate the generated.  

4.2 The significance of precise measurement of iron content in the context of geology and 

exploration 

The developed methodology has been demonstrated to accurately determine the presence and 

three-dimensional distribution of Fe in the processed drill core sample. Iron is present in the 

crystal lattice of nearly all minerals present in the studied core samples (Table 2), with the 

notable exception of quartz (pure SiO2). The minerals with the highest Fe content in these 

samples are expected to be almandine garnet (up to 33.66 wt% Fe), as well as hematite 

staining on hornblende (69.94 wt% Fe). The comparison between the petrographic analysis 

and the CT images of the cores leads to the interpretation that the brightest areas in the CT 

images represent almandine garnet. Hematite staining is also identifiable, but not as 

prominent which is probably due to its subordinate character (staining on hornblende). 

The distribution of Fe in geological samples has important implications for exploration for 

metallic ore deposits. Alteration haloes of hydrothermal ore deposits, such as volcanogenic 

massive sulphide deposits, for example, typically experienced Fe enrichment to varying 

degrees during fluid flow and ore formation. This will lead to the formation of Fe-rich 

minerals such as chlorite and almandine garnet, the latter especially in metamorphosed 

deposits. Recent studies demonstrate that the three-dimensional distribution of Fe content in 

rocks surrounding hydrothermal ore deposits, based on both whole-rock geochemical data 

and mineral-chemical analysis, can be utilized to identify vectors towards mineralization 

([5]). For this reason, methods that are able to accurately determine the distribution of Fe-

rich minerals and general Fe content in rocks will aid geologists in the efficient targeting of 

ore deposits. In this context, we evaluate the herein developed method as a valuable 

contribution towards more objective and automatized processes in exploration, worthy of 

further investigation and development. 

5 References 

[1] https://www.python.org  

[2] http://www.numpy.org  

[3] https://www.scipy.org  

[4] https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html 

[5] Kampmann TC, Jansson NJ, Stephens MB, Majka J, Lasskogen J (2017) Systematics of Hydrothermal 

Alteration at the Falun Base Metal Sulfide Deposit and Implications for Ore Genesis and Exploration, 

Bergslagen Ore District, Fennoscandian Shield, Sweden. Economic Geology 112, 1111–1152. 


